DETERMINING THE HEAT LOSSES DUE TO RADIATION
IN AN AXTALLY SYMMETRIC HIGH-TEMPERATURE
STREAM OF SPHERICAL PARTICLES

V.A., Zhuravl'ev and M.K. Trukhin UDC 536,242

The mean radiation losses in a diverging axially symmetric stream of spherical particles
are determined on the basis of a probabilistic estimate.

The study of high-temperature heat transfer involving particles or droplets is of great interest in
many areas of science and engineering. This problem is especially important in processes such as the
casting of metals and the combustion of powder fuel.

In practical calculations of radiative heat transfer in dispersed media bulk parameters of radiation
are used: the dispersivity and the dispersion indicatrix, Such calculations applicable to various heat-
engineering devices have been performed in [1]. For several dispersion systems, however, simple esti-
mates of radiation losses can be made on the basis of probabilistic concepts associated with the shielding
of particles during the heat transfer,

For our analysis we choose the most important practical case, that of a steady axially symmetric
diverging stream of freely falling spherical particles or droplets. It will be assumed that all particles or
droplets are of the same size and that heat losses can be incurred only by radiation into the unshielded
surrounding space. For simplicity, we will henceforth refer to particles only.

We define a random parameter of this dispersion system, For this purpose we single out a cylin-
drical layer of height 2r, within the stream of particles and track its downward motion during an arbitrary
interval of time. The heat loss from this layer is made up of the heat losses from its component particles.
The contributions of different particles will not be the same, however. Thus, an arbitrary particle lo-
cated at the periphery of the stream will contribute most to the heat losses from the layer while a particle
at the center of the stream will contribute least. This picture is explained by the shielding of the radiating
surface of particles by neighboring particles and it determines the existence of a discretely distributed
random parameter in the form of a relative shielded surface area of a particle,

Using the axial symmetry of the system, we will divide all particles within the selected stream layer
into groups on the basis of this parameter, combining particles with equal shielded surface areas, and we
will refer all properties of a particle which depend on its position in the stream to the coordinate of its cen-
ter of gravity.

Let r;j be the center-of-gravity coordinate and Pj(r;, R) be the shielding probability of particles in
the j-th group. The function Pj(r;, R) will be defined as the probability that a particle with its center of
gravity at point rj within the selected stream layer of radius R has a shielded surface 4711"%P-(rj, R). Given
the number of particles nj in every group, we can find the mean probability of surface shieléing for a par-
ticle in any arbitrary stream layer and, after averaging the result over all stream layers, we can deter~
mine the mean probability of surface shielding for a particle during its flow time:
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Fig.1. Distribution of peri~
pheral particles in a group
in a stream layer,

The flow time is fixed by the finite radius R(t) of the diverging stream of particles. In order to es-
tablish the function Pj(rj, R), we use a geometrical model of the packing of spherical particles in an ele-
mentary cylindrical tube of height equal to the particle diameter. We now introduce the mean packing den~
sity of particles in the form of the rarefaction parameter of a layer R/R; = B, which is defined continuously
within the region 1 = < «©, Let us examine a layer with a dense packing of particles, where R =R;. In
this case the function P;(rj, R) is everywhere equal to unity, except at the peripheral particles. Let us
find the boundary value Py(rz, Ry) on the basis of the geometrical model shown in Fig.1:

Ty

2arccos

Py(r,, Ry) =Py = 2};0——4,

This means that Pj (rj, Rg) is a step function defined in a discrete parameter space and assuming its char-
acteristic value at the layer boundary (rj =7 =R¢—ry):

. -
o
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We next convert to dimensionless quantities:
_ 1t . vy = Ry
Rg rG
and determine the form of function Pj(ﬁj, By =1). It follows from condition (2) for j # V;— 1 that
apj (ﬁj’ ﬂo) == 0
o,
I—Pj(ﬁj’ ﬁo) =0.
Combining these two relations through indeterminate coefficients 1, ¥, and then integrating the resultant
equation, we have

B

’

P; By Bo) =1 —Cexp—y(B; + ). )
To this solution we add the boundary condition
Py — 5!, Bo) =P,
and obtain
Py=1—C, By—v;l+1n=0.
Furthermore, since Pj(ﬁj, By) =1for j #vy—1 (By= Bj + v5l), hence v (By— ﬁj —vgly = © and

! (5)

Y
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With the aid of expressions (3), (4), and (5), we can transform condition (2) to
ﬁ — ﬁ. —e
P; (B, Bo) =1—(1—P)exp— _9___6_0_1__;_1_‘1_

For all states of the stream layer, with 8 > B, the step function Pj (Bj, By is characteristically smoothed
out by
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B—B8;— 5!

Pj (ﬁja ﬁ) =1 —(1 - PO) exp — 6__'_1 . (6)
Assuming that the particles are small (¥, > 1), we determine the mean probability Pj (Bj, B); we have
PuB)=<P; By, B)> =1—(1—P)E(B), M
where
_ B—By—vo' | _ (6—1 {1—vo*‘ _5——V0_2}
E@=(exp——pg—7—>=2 ﬁ_%__l) F—1 TP T =1 ) (8)

Since the rarefaction parameter for a stream layer is defined continuously within the region 1 = § <,
the probability Pgp(8) may be averaged over the interval 1— B¢, Namely,

Pan= ( By(B)> =1 —(1—Py) SBa), 9
where
Bf
_ 1= Br—vo'  1—vg! 1 F—1\ [ B—w' .
S(ﬁf)‘<E(ﬁ)>“2{ Bt -1 n 1—vg!  Br—vo! +ﬁf—-15 (ﬂ-——vo') eXP( p—1 )dﬁ} (10

The integral in (10) can be easily expressed in terms of an integral exponential function:
B§

] (S e (e B ()
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Inserting (10) and (11) into (9) yields
4 s 1—vg'  Br—vi  1—vp"
Psh=1—(1 P0)2{ P e —— Py
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p PLo ST — — E
T v T = T T A =t ( Br—1 )} (12

According to this expression, the mean probability of a particle surface being shielded during its flow time
Pgp, is determined by the relative particle dimension V0’1 and the final value of the rarefaction parameter
B¢ for a stream layer., Equation (12) is represented graphically in Fig.2. Using the initial expression (1),
we now find the mean value of the surface shielding of a particle:

(x ) = 4ariPy, . (13)

A particle having such a shielded surface area will be called a characteristic particle; its specific heat
losses correspond to the specific heat losses of the entire stream.

Let us then determine the losses from an unshielded particle, using the solution given in [2] to the
problem of heat conduction in a sphere with uniform Stefan— Boltzmann boundary conditions and considering
that T(r, t— T) > T,

1
9Bi{u2 + (Bi— 1)2} ? rysinp, —

7 (r t— 2 : r 1
1 ntl 0 ex @ Fo 4

Averaging the temperature over the volume and taking into account that Bi <1, we find
(T(—1)) = T (1) exp (— 3BiFo). (15)

The Bi number in this expression does not remain constant during the flow time of particle, because the
temperature of its radiating surface changes, Therefore, Bi may be replaced by its average value {(Bi)
over the time interval T — 7, and this value is found by solving (14) for r =rjand Bi < I1:

. .

( (Bi) )Tzsin]/3<Bi> 1 — exp(—3 ( Bi ) Fo) (16)
Bi V3({Bi} ( 3(Bi)Fo )
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According to [3], the initial value of the Bi number is

Bi = c,e (%%)3%. (17

In terms of (15), consequently, the specific heat losses from an unshielded particle are
Q =T (1) {1 —exp(— 3 { Bi ) Fo)}. (18)

Furthermore, (Bi) = (®)ry/A with (@) = 008((T)/1OO)3. In the case of a shielded particle the concept of
the equivalent Bi number may be introduced:

3

(Bi gy L2200

where (@) = (1 - Pgh) (@), i.e.,

(Bipgp=(1 —Pg) (Bi). (19)
In this way, with the aid of (18) and (19), the heat losses from a shielded particle can be expressed as
Qeh=cT (v) {1 —exp [—3(1 ~—Pg){ Bi ) Fol}. (20)

For a high-temperature system of droplets where the latter may be cooled below their freezing point, it
becomes necessary, in view of the stipulations on the solution of (14), to impose on (20) the restriction
that the state of the medium cannot change. This requires that

(Biy>{Bi,), . (21)
where the value of the limiting number (Bi) 1, is determined from the expression

; sin)/3(Biy, T

((Bi>L>3—= V3(B, T - (22)
Bi n(sinV3<Bm_T(r))
3(Biy, T

which can easily be derived by averaging solution (14) for r = ryand Bi < 1,

As an example, let us determine the heat losses from a jet of comminuted molten stainless steel
with the following values for the parameters needed in the calculation: Ry = 15 .10-3 m; ¥y =10, T(T)
= 2073°K; By = 1.1; height of the comminuted melt jet 0.3 m.

According to [4], the thermophysical characteristics of interest here are: A =29.1 W/m* deg; ¢
=0.84 KJ/kg -deg C; a = 0.54 1075 m¥/sec; Tg = 1743°K; € = 2.60 W/m? - deg.

At a pouring rate of 1 m/sec for metals, the flow time of a characteristic droplet is 0.3 sec, i.e.,
Fo =1.62. With the aid of (14) and (17), we find Pgp, = 0.95 and Bi = 3.22 - 102, A graphical sclution of
Eq.(16) yields {Bi) =2.61-10"% According to Eq.(22), the {Bi)y, number is equal to 2.49 -10~? and, con-
sequently, requirement (21) is satisfied, Equation (20) yields the heat losses from a comminuted melt
jet: Qgh = 9.3 KJ/kg

If one assumes By = 2 here, with all other conditions as before, then, Pgh = 0,775 and Qgp = 42.3
KJ3/kg.

NOTATION

Y is the coordinate of the center of gravity of a particle in the stream layer;
nj is the number of particles in the group with coordinate Tjs
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n is the total number of particles in the stream layer;

Pj (Bj, B) is the probability of surface shielding for an arbitrary particle;
Py (8) is the mean shielding probability for a particle in the stream;
Py is the shielding probability for a particle at the stream boundary;
Ry is the radius of the stream layer at the initial moment;
R is the radius of the stream layer at any instant of time ¢;
tg— T is the flow time of a particle;
rg is the radius of a particle;
T, t—17) is the instantaneous temperature at an arbitrary point of the particle;
T, t—7) =T (r,
t—T)— 273K
T, is the ambpient temperature;
(Tt 1) is the average temperature of a particle;
T(T) is the initial temperature of particles in the stream layer;
Tg is the temperature of solidification;
c is the specific heat;
p is the density;
a is the thermal diffusivity;
Cy is the radiation constant;
€ is the emissivity;
A is the thermal conductivity;
Qgh is the specific heat loss from a shielded particle;
Fo is the Fourier number;
Bi is the Biot number;
Q is the specific heat loss from an unshielded particle;
{x) is the mean shielded surface area of a particle;
(Bi)e is the equivalent Biot number;
(Bi)1, is the limiting Biot number;
Pgp is the mean probability of surface shielding for a characteristic particle.
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